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MATHEMATICAL SIMULATION OF THE MECHANISM

OF ACOUSTIC DRYING OF POROUS MATERIALS

UDC 532.72; 669.015.23A. A. Zhilin, A. V. Fedorov,

Yu. G. Korobeinikov, and V. M. Fomin

A mathematical model is proposed for the description of moisture extraction during drying of ma-
terials in an acoustic field, and its asymptotic filtration approximation is analyzed. The calculated
time of pressure relaxation in the specimen in the filtration model is found to be in good agreement
with the calculation results obtained by solving equations of mechanics of heterogeneous media. The
proposed model has solutions of the traveling acoustic wave type, which are stable in time and space,
and adequately describes the initial stage of the process of acoustic drying.
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Extensive application of porous materials in chemical, construction, furniture, food, and other branches
of industry turns attention of various specialists to the problem of studying mechanisms and processes in porous
bodies under the action of external loads, which affect the quality and properties of materials. This class of materials
includes solid chemical reagents obtained by pressing from disperse and finely disperse powders, natural materials
of biological composition, e.g., wood, grain, etc.

In the present work, wood was chosen as an object of investigation. Wood is a complex polydisperse material
with clearly expressed anisotropic properties. Wood contains a considerable amount of moisture necessary for vital
activity of the tree. Depending on the sort, age, and cross-sectional area of the trunk, the content of moisture in a
living tree can vary from 40 to 140%. The humidity of wood ω is understood as the amount of moisture normalized
to the mass of absolutely dry wood M2: ω = 100(M1 −M2)/M2 (M1 is the mass of the wet wood specimen). To
transform wood into a valuable building material, it should be made resistant to putrefaction, which is achieved by
removing moisture.

Various methods of wood drying based on heat addition to the material being dried are used in industry [1].
Apart from the convective method of drying, there is an alternative acoustic method. In acoustic drying, moisture
is removed from the material being dried by irradiation by sound with appropriate characteristics. The main
advantages of acoustic drying is the high intensity of the process, the possibility of controlling it in a wide range,
and reaching an almost arbitrary final humidity of wood. A principal difference of the acoustic method from the
traditional one is that drying proceeds without an increase in temperature of the material being dried (“cold”
drying [2]). This makes possible defect-free drying of thick beams with high strength of dry wood, which is lower
in convective drying because of overheating.

The process of acoustic drying of materials has been known for a long time [3], but there is no single
approach to its description. Therefore, construction of a comprehensive mathematical model that allows one to
describe physical mechanisms of drying of porous materials at room temperature in a high-intensity acoustic field
is an urgent problem.
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Physicomathematical Formulation of the Problem of Beam Drying in the Approximation of
Mechanics of Heterogeneous Media. Basic Equations and Formulation of the Problem of Wood Drying with
Allowance for Velocity Nonequilibrium and Pressure Difference of the Phases. We consider the problem of drying
of a porous body by excitation of acoustic vibrations in the body. We study the motion of the liquid in a wooden
beam of length l with an area of the rectangular cross section S. We assume that the left end of the beam is rigidly
fixed (u2 = u1 = 0); the right end is free, and small rarefaction of about 0.1 atm is provided at the right butt-end
face of the beam. This allows us to reduce the problem of migration of the liquid in the porous structure of the
specimen to the problem of linear acoustics of mechanics of heterogeneous media. We consider the main flow with
the parameters Pi = P0 = 1 atm and u2 = u1 = 0 (i = 1 refers to the liquid and i = 2 to the solid skeleton).

Equations of mechanics of heterogeneous media, which take into account the difference in velocities and
pressures of the components of the mixture, are used for the mathematical description of the posed problem. In
the one-dimensional isothermal approximation, the problem is described by a system of differential equations that
express the laws of conservation of mass and momentum for each component of the mixture, supplemented by the
equation of m2-transfer:
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System (1) is hyperbolic. To close the system, we supplement it by equations of state for each component and by
the geometric identity:

Pi = a2
i (ρii − ρii,0), m1 = 1−m2. (2)

In (1), (2), ρi = miρii is the mean density of the ith component of the mixture, ui is the velocity of the ith component,
Pi is the pressure of the ith component, mi is the volume concentration of the ith component, FS = m1ρ2(u2 − u1)/τS
is the Stokes force, τS = 2ρ22r

2/(9µ1) is the time of Stokes relaxation of velocities, R = m1m2(P2 − P1)/µ2 is a
function that describes the process of transfer of the solid phase, µi is the dynamic viscosity of the ith component,
ρii is the true density of the ith component, ai is the velocity of sound in the material of the ith component, ρii,0
is the true density of the material of the ith component, x is the spatial variable, r is the pore radius, and t is the
time.

Transition to Dimensionless Variables. To perform a parametric analysis and increase the applicability area
of the results obtain, we pass to the dimensionless variables ρ̄i, ūi, P̄i, x̄, and t̄. Normalization was performed with
respect to physical parameters in the initial (undisturbed) state:

ρ̄i =
ρi
ρ11,0

, ūi =
ui
a1
, P̄i =

Pi
ρ11,0a2

1

, x̄ =
x

l
, t̄ =

a1t

l
.

Here l is the characteristic linear scale. In the first component, the dimensionless velocity of sound and its true
density equal unity; for the second component, a = a2/a1 and ρ̄ = ρ22,0/ρ11,0, respectively.

During normalization, the right side of the equation of m2-transfer R has the dimension 1/t, and we can
introduce a new variable τm2 , which is a function of µ2 and describes the time of pressure relaxation of the compo-
nents of the mixture. According to the estimate of [4], µ2 ≈ ρ22,0a2d; therefore, we have τm2 = 2a2ρ22,0r/(ρ11,0a

2
1)

in the dimensional form and τ̄m2 = 2aρ̄ r̄ in the dimensionless form.
After normalization, system (1) has the same form. The expressions for the characteristic times of the

processes of velocity and pressure relaxation of the components are τ̄S = 2ρ̄r̄2/(9µ̄1) and τ̄m2 = 2µ̄2, and the
dimensionless equations of state are

P̄1 = ρ̄1/m̄1 − 1, P̄2 = a2(ρ̄2/m̄2 − ρ̄). (3)

In what follows, the bar over the dimensionless variables is omitted.
Linearization of the Initial System of Equations. In the linear approximation, the amplitude of vibrations is

so small that we can neglect all changes caused by mass and momentum transfer. Mathematically, this is expressed
in neglecting terms of Eq. (1) containing the second powers and products of small quantities determining the
deviation of parameters of the mixture from the equilibrium state.
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We represent the variables ρi, ui, Pi, and mi as

ρi = ρi0 + ρ′i, ui = ui0 + u′i, Pi = Pi0 + P ′i , mi = mi0 +m′i, (4)

where ρi0, ui0, Pi0, and mi0 are constant equilibrium values of densities, velocities, pressures, and volume concen-
trations of the components of the mixture, and ρ′i, u

′
i, P

′
i , and m′i are the deviations of the densities, velocities,

pressures, and volume concentrations of the components from the equilibrium values. We assume that ui0 and Pi0
in the equilibrium state are equal to zero.

Substituting (4) into the dimensionless analog of system (1) and the equations of state (3) and neglecting
small quantities, we obtain linearized equations of mechanics of heterogeneous media for acoustic vibrations

∂ρ′1
∂t

+ ρ10
∂u′1
∂x

= 0,
∂ρ′2
∂t

+ ρ20
∂u′2
∂x

= 0,
(5)

ρ10
∂u′1
∂t

+m10
∂P ′1
∂x

= F ′S, ρ20
∂u′2
∂t

+m20
∂P ′2
∂x

= −F ′S,
∂m′2
∂t

= R′,

where F ′S = m10ρ20(u′2 − u′1)/τS and R′ = m10m20(P ′2 − P ′1)/τm2 . The equations of state (3) and the geometric
identity acquire the following form:

P ′1 = (ρ′1 −m′1)/m10, P ′2 = a2(ρ′2 −m′2ρ̄)/m20, m′1 = −m′2. (6)

Below, the primes at linearized variables are omitted, and the use of nonlinearized variables is specially indicated.
Introduction of a Small Parameter. All dimensionless quantities in system (5) are small; therefore, for

convenience, we consider the parameters Pi = εP 0
i , ui = εu0

i , ρi = ερ0
i , and mi = εm0

i (ε is a small quantity). Then,
P 0
i , u0

i , ρ
0
i , and m0

i are finite quantities. Cancelling ε, we obtain an equation whose structure is similar to Eq. (5).
Heterogeneous Model of the Drying Process. In the present work, the heterogeneous model is under-

stood as a mathematical model used to study drying of a porous material consisting of wood and a filler (water)
filling voids in the solid material. The examined mixture of wood and water obeys the main assumptions of mechan-
ics of heterogeneous media; therefore, the study can be performed within the model of interpenetrating continua.
According to this model, each point in space is characterized by a complete set of physical parameters (density,
velocity, pressure, etc.) for each phase. For each phase, we write the laws of conservation (1) or (5) represented by
differential equations in partial derivatives.

For the numerical solution of system (5) with closing equations (6) and initial-boundary conditions corre-
sponding to the physical problem, we use a modified method of “coarse particles” of the first order of approxima-
tion [5].

Since rarefaction is set at the free end of the beam in both phases P 0
1 (t) = P 0

2 (t) = −1, an unloading wave
propagates inward. Figure 1 shows the pressure distribution in water and beam. At t = 5, the pressure in wood
decreases from the initial value equal to zero to P 0

2 ≈ −0.9; the most drastic decrease is observed in the unloading
wave (segment A′B′ in Fig. 1b). The pressure P 0

2 = −1 set at the right end of the specimen is reached in the
relaxation zone behind the unloading wave. The change in pressure of the liquid P 0

1 also occurs in the unloading
wave, which lags behind the unloading wave in wood. Immediately behind the unloading wave front moving over
the rigid skeleton (point A′B′ in Fig. 1a), the unloading wave in the liquid is formed. Thus, a precursor appears
whose leading front propagates with the velocity of sound in the solid skeleton and the rare front propagates with
the velocity of sound in the liquid. Then follows the unloading wave (segment AB in Fig. 1a) with smooth transition
to the equilibrium value specified at the right end of the beam. The velocities of the unloading waves AB and A′B′

correspond to the velocities of disturbances in the corresponding media. With time (t > 10), the width of the
precursor zone increases, since a2 > a1. The parameters u0

i behave similarly, and the amplitude of velocity in the
second phase decreases with time. The velocity in the liquid is a function smoothly varying due to friction between
the phases in the region between the leading shock in the solid skeleton (point A′B′) and the closing shock in the
liquid (point AB).

Figure 2 shows the flow rate of the liquid Q1 through the free end of the beam versus time. During 40 msec
(t = 600), almost a constant value of velocities of the components equal to zero is established in the entire beam
5 m long, and P 0

1 = P 0
2 = −1. The profiles of densities of the components correspond to the pressure profiles in the

respective phases.
A set of calculations of pressure in the beam with different pore diameters was performed. In Fig. 3, the

points refer to the times of pressure relaxation for pores 50, 200, and 400 µm in diameter. With decreasing pore
diameter, a significant increase in the time of velocity and pressure relaxation in the components is observed.
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Fig. 1. Propagation of unloading waves in water (a) and wood (b): the solid curves refer to waves
propagating from the free boundary to the rigid wall; the dashed curves refer to waves moving in
the opposite direction.

Filtration Model of the Drying Process. Area of Applicability of the Filtration Theory. Let us estimate
the Stokes force on the basis of the filtration theory. We write the Darcy filtration law [6] in the dimensional form

u = −(k/µ1) gradP,

where µ1 is the dynamic viscosity of the filtered liquid and k is the permeability depending on the geometric
parameters of the porous medium, which has the dimension of area. The permeability of most sorts of materials
is low. For example, k = 10−12–10−13 m2 for coarse-grain sandstone and k = 10−14 m2 for compact sandstone.
To evaluate the permeability coefficient for wood, we use the Kozeny–Kármán equation derived with the use of
the analogy between a porous medium and a system of parallel tubes, which relates the permeability of the porous
material with the porosity and specific area of the surface. According to [7], we have

k = d2m3
1/(150(1−m2

1)).

The permeability coefficients (in Darcy; 1 Da = 1.02 · 10−12 m2) for various volume concentrations of water
and pore diameters are listed in Table 1. Note, an increase in both the pore diameter and the volume concentration
of water in the specimen leads to an increase in permeability of the porous material. It follows from Table 1 that
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Fig. 2. Flow rate of the liquid through the free end of the beam versus time (the dashed region is the
volume of the liquid leaving the specimen being dried).
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Fig. 3. Time of pressure relaxation in the beam versus the pore diameter: the solid curve shows the
calculation by the filtration model, and the points show the calculation by the heterogeneous model.

the permeability of wood significantly depends on the parameters m1 and d. For instance, if the pore diameter in
the beam cross section changes from 20 to 40 µm, the permeability coefficient in this cross section can increase by
a factor of 4.

In the one-dimensional approximation, the Darcy law has the form

u = − k

µ1

∂P1

∂x
.

As the velocity u in the filtration problem, we use the mass velocity of the filtered material, i.e., u = m1u1. Then,
we have

∂P1

∂x
= −µ1m1u1

k
. (7)

At the same time, from the law of conservation of momentum for the light component (1), with allowance for the
filtrational character of the flow, we obtain the expression
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TABLE 1

d, µm
k, Da

m1 = 0.3 m1 = 0.5 m1 = 0.7

10 0.01939 0.10893 0.43957
20 0.07757 0.43573 1.75830
30 0.17453 0.98039 3.95617
40 0.31028 1.74292 7.03319
50 0.48481 2.72331 10.98936
100 1.93924 10.89325 43.95745
150 4.36328 24.50980 98.90427
200 7.75695 43.57298 157.82981

FS = m1
∂P1

∂x
. (8)

Substituting the expression for ∂P1/∂x from (7) into (8), we find the relation between the permeability and the
Stokes force:

k = −µ1m
2
1u1/FS. (9)

Since the flow is filtrational (u2 = 0), the expression for the Stokes force takes the form

FS = −18µ1m1m2u1/d
2.

Substituting the resultant expression into (9), we find the dependence of permeability on the particle diameter and
volume concentration of the components of the mixture

k = m1d
2/(18m2).

Based on the previously found permeability of wood k = 2 · 10−10–10−13 m2, we determine the particle
diameter

d =
√

18m2k/m1.

Thus, we have d = 40–100 µm for k = 2 · 10−10 m2 and d = 5–25 µm for k = 10−13 m2. Therefore, the
approximation Cd = 24/Re (Re is the Reynolds number) is valid for pore diameters from 5 to 100 µm.

In the general case, the expression for the Stokes force also contains the Reynolds number and the drag
coefficient Cd:

FS =
m1ρ2

τS
Cd

Re
24

(u2 − u1).

Substituting Re = ρ1|u1 − u2|d/(m1µ1) into the above-given relation, we obtain the expression for permeability in
the form

k =
4
3

m2
1µ1d

ρ1m2u1Cd
.

Analytical Solution of the Problem of Specimen Drying. Let u0
2 = 0, P 0

2 = const, and ∂u0
1/∂t� 1. Then, we

have ρ0
2 = const and FS = −m10ρ20u

0
1/τS; the initial system (5) acquires the form

∂ρ0
1

∂t
+ ρ10

∂u0
1

∂x
= 0,

∂P 0
1

∂x
= −ρ20u

0
1

τS
. (10)

From the second equation of system (10), we find

u0
1 = − τS

ρ20

∂P 0
1

∂x
.

Substituting the resultant expression into the first equation of system (10), we obtain the equation

∂P 0
1

∂t
= k

∂2P 0
1

∂x2
(11)

[k = ρ10τS/(m10ρ20)] with the following initial and boundary conditions:

t = 0: P 0
1 (x, 0) =

{
0, 0 6 x < l,

−1, x = l;
(12)
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Fig. 4. Pressure in the medium as a function of the pore diameter (a) and volume concentration of
water (b) in the beam for t = 10: m10 = 0.5 (a) and d = 50 µm (b).

x = l: P 0
1 (l, t) = −1, x = −l: P 0

1 (−l, t) = −1, x = 0:
∂P 0

1 (0, t)
∂x

= 0. (13)

The differential equation obtained is the heat-conduction equation. To solve it, we use the method of
separation of variables (Fourier method) [8]. The solution of problem (11) satisfying the boundary conditions (13)
and initial conditions (12) is written as the series

P 0
1 (x, t) = −1 +

∞∑
n=1

4(−1)n+1

π(2n− 1)
cos
(πx

2l
(2n− 1)

)
exp

(
− k π

2t

4l2
(2n− 1)2

)
.

Figure 4a shows the behavior of the filtration unloading wave propagating in beams with different pore
diameters. It is seen that the unloading wave velocity in the beam increases with increasing pore diameter. Figure 4b
shows the pressure distributions in the liquid contained in the beam for various initial volume concentrations of water.
It should be noted that the unloading wave velocity in the beam increases with increasing volume concentration
of water in the material. Thus, in the course of acoustic drying of porous materials, in addition to a decrease in
humidity of the beam, the velocity of acoustic waves in wood decreases, which is caused by the increase in the
damping coefficient of acoustic disturbances in a dry medium.
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The solid curve in Fig. 3 shows the time of pressure relaxation in the beam versus the pore diameter.
The results predicted by the filtration model are in good agreement with the calculation results obtained by the
heterogeneous model.

Dispersion Relations. Substituting the expressions for P 0
1 and P 0

2 from the equations of state (6) into
the initial system (5), we obtain a system of differential equations for the sought functions ρ0

1, ρ0
2, u0

1, u0
2, and m0

2:

∂ρ0
1

∂t
+ ρ10

∂u0
1

∂x
= 0,

∂ρ0
2

∂t
+ ρ20

∂u0
2

∂x
= 0,

ρ10
∂u0

1

∂t
+
∂ρ0

1

∂x
+
∂m0

2

∂x
− m10ρ20(u0

2 − u0
1)

τS
= 0,

ρ20
∂u0

2

∂t
+ a2 ∂ρ

0
2

∂x
− a2 ρ̄

∂m0
2

∂x
+
m10ρ20(u0

2 − u0
1)

τS
= 0,

(14)

∂m0
2

∂t
− a2m10ρ

0
2

τm2

+
m20ρ

0
1

τm2

+
(m20 + a2ρ̄m10)m0

2

τm2

= 0.

The solution of system (14) is sought in the form of a plane sinusoidal wave, written in an exponential form
Φ = Φ0 ei(ωt−kx) [k is the wavenumber, ω = 2π/T is the cyclic (circular) frequency of the wave, T is the period of
oscillations, and Φ = Φ(ρ0

1, ρ
0
2, u

0
1, u

0
2,m

0
2) is the vector of the solution]. By substituting this solution into (14) and

cancelling ei(ωt−kx), we obtain a system of five linear equations for five unknowns ρ0
01, ρ0

02, u0
01, u0

02, and m0
02. For

this system, we write the determinant A consisting of coefficients at the corresponding unknowns:

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iω 0 −ρ10ik 0 0

0 iω 0 −ρ20ik 0

−ik 0 ρ10iω +
m10ρ20

τS
−m10ρ20

τS
−ik

0 −a2ik −m10ρ20

τS
ρ20iω +

m10ρ20

τS
a2ρ̄ik

m20

τm2

−a
2m10

τm2

0 0 iω +
m20 + a2ρ̄m10

τm2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

To obtain dispersion relations, the determinant A is equated to zero. Substituting the expressions for
ρ10 = m10 and ρ20 = ρ̄m20, after simplifications, we obtain the dependence between ω and k:

a2ik4ω − ik2ω3 − a2ik2ω3 + iω5 − (k2m10ω
2 + a2k2ρ̄m20ω

2 −m10ω
4 − ρ̄m20ω

4)/τS

− (a2k2ω2m20 + a2k2ω2m10ρ̄− ω4m20 − a2ω4m10ρ̄)/τm2 + (a2ik2m2
10ρ̄ω + 2a2ik2m10m20ρ̄ω

+ a2ik2m2
20ρ̄ω − iω3m10m20 − a2im2

10ρ̄ω
3 − im2

20ρ̄ω
3 − a2im10m20ρ̄

2ω3)/(τSτm2) = 0. (15)

Grouping terms of Eq. (15) containing ω, we obtain the expression

iω4 + ω3A1 − iω2[k2(1 + a2) +A2]− ωk2A3 + ia2k2(k2 +A4) = 0, (16)

where A1 = (m10 + ρ̄m20)/τS + (m20 + a2ρ̄m10)/τm2 , A2 = (m10 + ρ̄m20)(m20 + a2ρ̄m10)/(τSτm2),
A3 = (m10 + a2ρ̄m20)/τS + a2(m20 + ρ̄m10)/τm2 , and A4 = ρ̄/(τSτm2).

The cyclic frequency of the wave can be represented as a sum of the real and imaginary parts:

ω = ωr + iγ.

Here ωr is the real part and γ is the growth rate of small perturbations whose sign determines flow stability (if
γ > 0, the flow is stable). Substituting ω into (16), we obtain an equation that can be written as a system of two
equations for the real and imaginary parts:

ωr{ω2
r(A1 − 4γ) + 4γ3 − 3A1γ

2 + 2γ[k2(1 + a2) +A2]− k2A3} = 0,

ω4
r − ω2

r [6γ2 − 3A1γ + k2(1 + a2) +A2] (17)

+ γ4 −A1γ
3 + [k2(1 + a2) +A2]γ2 − k2A3γ + a2k2(k2 +A4) = 0.
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Fig. 5. Growth rate of small perturbations versus the wavenumber: the first and second solutions
of system (17) are shown in Fig. 5a and 5b, respectively.

From the first equation of system (17), we can find two solutions for the real part: the trivial
solution ωr = 0 and the solution in the form of a function of the growth rate of small perturbations
ω2
r = {4γ3 − 3A1γ

2 + 2γ[k2(1 + a2) +A2]− k2A3}/(4γ −A1). Substituting the first solution into the equation
for the imaginary part, we obtain a fourth-order polynomial for determining γ with varied k and initial volume
concentration of water:

γ4 −A1γ
3 + [k2(1 + a2) +A2]γ2 − k2A3γ + a2k2(k2 +A4) = 0. (18)

Figure 5a shows the dependence of the roots of Eq. (18) on the initial parameters. For k = 0, there are
two multiple roots γ = 0, γ+ = (m10 + ρ̄m20)/τS and γ− = (m20 + a2ρ̄m10)/τm2 , and γ− > γ+. With increasing
(decreasing) k, the values of γ− decrease to γ̃, and the values of γ+ increase to γ̃. It is seen in Fig. 5 that the
branches of the solution γ+ and γ− (γ+ = γ− = γ̃) intersect at k = |kmax|; with further increase in |k|, the roots
pass to the imaginary plane. Note, with increasing m10, the absolute value of kmax and the value of γ̃ increase.
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TABLE 2

m10 γ∗∗ γI · 10−3 γII · 10−3 γIII γIV γV

0.1 0.097 0.174 0.456 0.076 0.195 0.314
0.2 0.124 0.183 0.479 0.096 0.247 0.398
0.3 0.150 0.191 0.501 0.116 0.300 0.483
0.4 0.176 0.200 0.524 0.137 0.352 0.567
0.5 0.202 0.208 0.546 0.157 0.404 0.652
0.6 0.229 0.217 0.568 0.177 0.457 0.737
0.7 0.255 0.226 0.591 0.198 0.509 0.821
0.8 0.281 0.234 0.613 0.218 0.562 0.906
0.9 0.307 0.243 0.635 0.238 0.614 0.990

We study whether the solutions can pass from the positive half-plane to the negative one. We find the real
roots of Eq. (18) for γ = 0. Since ρ̄, τS, and τm2 are always positive, the resultant biquadratic equation with respect
to k has one multiple real solution k = 0 and two imaginary solutions k± = ±i

√
ρ̄/(τSτm2). Thus, all solutions of

Eq. (18) are located in the upper half-plane where γ > 0 and vanish at the point k = 0 only.
If the second solution ωr = ωr(γ, k,m10) is substituted into the equation for the imaginary part, then, for

γ 6= A1/4, the expression for the growth rate of small perturbations can be represented as a sixth-power polynomial.
Being too cumbersome, this expression is not given here. The roots of this equation were found numerically and
are plotted in Fig. 5b. Three types of roots can be identified. The roots of the first type are shown in Fig. 5b in
an enlarged scale. They have the form of an ellipse. With increasing volume concentration of moisture, the size
of the ellipse increases, and γ changes from zero to γI [in Table 2, the values of γi (i = I–V) for various m10 are
listed]. The solutions of the second type have an ellipsoid shape (Fig. 5b). In our case, we have γ ∈ [γII, γIII]. With
increasing m10, the values of the roots also increase. The roots of the third type significantly depend on the initial
volume concentration of moisture in the beam (Fig. 5b). For m10 = 0.7, the solutions have the form of a closed
curve Ω, which is shaped as a horseshoe and is located in the vicinity of k = 0, and two semi-infinite curves Θ and Θ′

located symmetrically about the axis γ. The curve Ω is located higher than the horizontal line γ = γ∗∗ (the values
of γ∗∗ are determined from the expression for ω2

r when the denominator vanishes and are listed in Table 2), and the
curve Θ is located below the line γ = γ∗∗. With decreasing m10, the curve Ω is shifted toward the lower values of γ
and gradually approaches the line γ = γ∗∗ (which is also shifted toward the lower values of γ with decreasing m10).
At the same time, the curves Θ move in the same direction as Ω but slower than the line γ = γ∗∗ (see the solutions
for m10 = 0.5 and 0.3). Thus, with decreasing m10 to m∗10 = (τS + τm2 ρ̄)/[τS(1 + a2ρ̄) + τm2(1 + ρ̄)] = 0.17585,
the curves of the solutions Ω and Θ converge. For m10 < m∗10, the curves are united and transformed into two
nonintersecting curves that belong to the entire range of values of k ∈ (−∞,+∞) with small variations in γ to the
values γIV and γV, respectively, in the vicinity of k = 0 (see the solution for m10 = 0.1). Note, in this case, both
curves of the solution are located above the line γ = γ∗∗.

We study the possibility of intersection of the axis k with the solution of the considered equation in the
interval (−∞,+∞). We assume that γ = 0 in this interval, which allows us to obtain the expression for ω2

r = −k2A

and the biquadratic equation for k in the form

k4(A2 +A(1 + a2) + a2) + k2
(
A

(m10 + ρ̄m20)(m20 + a2ρ̄m10)
τSτm2

+
a2ρ̄

τSτm2

)
= 0, (19)

where

A =
(m10 + a2ρ̄m20

τS
+ a2 m20 + ρ̄m10

τm2

)/(m10 + ρ̄m20

τS
+
m20 + a2ρ̄m10

τm2

)
> 0.

Equation (19) has two multiple trivial solutions k = 0 and two imaginary solutions

k = ±i

√
A(m10 + ρ̄m20)(m20 + a2ρ̄m10) + a2ρ̄

τSτm2(A2 +A(1 + a2) + a2)
.

Hence, all possible solutions are located in one positive half-plane (Fig. 5b) except for the point k = 0 where γ = 0.
The analysis of dispersion relations shows that acoustic vibrations generated in the specimen are stable and

decaying in the range of parameters (pore size, initial porosity of the specimen, etc.) obtained in experiments.
From the viewpoint of efficiency of acoustic drying, it is of interest to consider regimes of excitation of oscillations
in the specimen, which correspond to the closed curves shown in Fig. 5, because spatial disturbances decay weakly
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in this case. Note, there exists a point A invariant for all m10, where the absolute value of k∗ and the value of γ∗

are constant (Fig. 5a).
Dividing expression (15) by k5, introducing the phase velocity c = ω/k corresponding to the velocity of the

sinusoidal wave, and using the expressions τU = ωτS and τP = ωτm2 , we obtain the dispersion relation in the form

ic(1− c2)(a2 − c2)− c3[c2(m10 + ρ̄m20)− (m10 + a2ρ̄m20)]/τU

− c3[c2(m20 + a2m10ρ̄)− a2(m20 +m10ρ̄)]/τP + ic3[a2ρ̄− c2(m20 + a2ρ̄m10)(m10 +m20ρ̄)]/(τUτP ) = 0. (20)

One of the solutions of Eq. (20) is a constant solution c = 0, which corresponds to the trivial case of the
absence of propagation of sinusoidal waves in the medium.

Depending on the characteristic relaxation times, there are several types of flows of the mixture.
1. Frozen flow (τU → ∞ and τP → ∞). In this case, the velocities and pressures of the components are

different, and expression (20) is transformed to

(1− c2)(a2 − c2) = 0.

The resultant equation has four roots corresponding to the velocities of sound in pure materials composing the
mixture (c1,2 = ±1 and c3,4 = ±a).

2. Equilibrium flow (τU → 0 and τP → 0). In this case, the velocities and pressures of the phases are
identical, and expression (20) is reduced to the form

ic2[a2ρ̄− c2(m20 + a2ρ̄m10)(m10 +m20ρ̄)]/(τUτP ) = 0.

This equation has also four roots: c1,2 = 0 and c23,4 = a2ρ̄/[(m20 + a2ρ̄m10)(m10 + ρ̄m20)]. The second pair of the
roots corresponds to the equilibrium velocity of sound represented in [9, 10] in the form

C2
eq =

ξ1
m1

m1C − ρξ1
m2

1C − ρξ1
.

3. Equilibrium-frozen flow (τU → 0 and τP →∞). In this case, the velocities of the components are identical,
and the pressures are different (U1 = U2 and P 0

1 6= P 0
2 ); expression (20) has the form

c2[c2(m10 + ρ̄m20)− (m10 + a2ρ̄m20)]/τU = 0.

The solution has also two roots equal to zero and two roots of the form c23,4 = (m10 + a2ρ̄m20)/(m10 + ρ̄m20). The
last two roots determine the equilibrium-frozen velocity of sound Ceq,fr, which was used in [9, 10] in the form

C2
eq,fr = ξ1 + a2ξ2.

4. Frozen-equilibrium flow (τU →∞ and τP → 0). In this case, the velocities of the components are different,
and the pressures are identical; Eq. (20) is reduced to the expression

c2[c2(m20 + a2m10ρ̄)− a2(m20 +m10ρ̄)]/τP = 0,

which has four roots: c1,2 = 0 and c23,4 = a2(m20 + ρ̄m10)/(m20 + a2ρ̄m10). The last two roots characterize the
frozen-equilibrium velocity of sound C2

fr,eq, which can be represented in the form

C2
eq,fr = C2

eq(m2
20/ξ2 +m2

10/ξ1).

Figure 6 shows the characteristic velocities of sound versus the initial volume concentration of water in the
beam. The equilibrium, equilibrium-frozen, and frozen-equilibrium velocities of sound change monotonically in the
interval from the velocity of sound in the liquid (a1 = 1) to the velocity of sound in wood (a2 = a).

Experiment. The experiments on moisture extraction from wood were performed on a model drying
setup of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy of
Sciences. A built-in Gartman generator was used as a source of high-intensity sound. The operation principle of
the experimental setup is described in detail in [11].

Two series of experiments were performed. The material under study in the first series was pine. The first
specimen had the following dimensions: thickness h = 21 mm, width b = 130 mm, and length l = 1003 mm. The
second specimen had the following dimensions: h = 50 mm, b = 81 mm, and l = 1002 mm. The wave intensity was
178 dB and its frequency was 125 Hz. The pore diameter in the specimen varied from 20 to 40 µm. The weight of
the specimens was registered in the experiments (Table 3).
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Fig. 6. Characteristic velocities of sound versus the initial volume concentration of water in the beam.

TABLE 3

t, min Weight
of specimen 1, kg

Weight
of specimen 2, kg

0 2.285 3.090
5 2.265 3.075
10 2.250 3.060
15 2.235 3.050
20 2.220 3.040
25 2.205 3.025
30 2.190 3.015
35 2.180 3.005
40 2.170 3.000
45 2.160 —

TABLE 4

t, min
Specimen weight, kg

Specimen 1 Specimen 2 Specimen 3 Specimen 4

0 1.190 1.910 2.420 3.060
5 1.170 1.880 2.400 3.025
10 1.150 1.865 2.380 3.005
15 1.145 1.850 2.370 2.995
20 1.130 1.840 2.355 2.975
25 1.120 1.825 2.345 2.960
30 1.115 1.815 2.335 2.940

In the second series, we examined four birch specimens of identical width b = 70 mm and length l = 950 mm;
the thickness was h = 19, 30, 40, and 50 mm for specimens 1, 2, 3, and 4, respectively. The wave intensity was
177 dB and its frequency was 130 Hz. The mean pore diameter in the specimen was 30 µm. The test results are
listed in Table 4.

Comparison of Experimental and Numerical Data. In numerical calculations within the mathematical
model (5), (6), we used the value of the maximum pressure amplitude Pmax evaluated by the known intensity of the
acoustic wave L (measured in decibels) in accordance with [12]: L = 20 log (Pmax/(

√
2P̃0)), where P̃0 = 2 · 10−5 Pa.

We obtained Pmax = 22,467 Pa in the first test series and Pmax = 20,024 Pa in the second one.
Figure 7 shows the results of calculations and the physical experiment, which characterize the intensity of

moisture entrainment from the specimen being dried. As a whole, the calculated estimates are in good agreement
with the experimental data. It should be noted that the theoretical dependence ∆m(t) is close to linear, whereas
gradual attenuation of the moisture-entrainment rate at large times of the drying process (more than one hour) is
observed. This indicates the necessity of improving the model, possibly, by taking into account weak nonlinearity
and the presence of air trapped in the specimen.

Conclusions. A mathematical model is proposed for the description of phenomena of moisture transfer
and extraction during drying of materials at room temperature in a high-intensity acoustic field.

Based on the assumptions of the filtration theory, the mathematical model examines its asymptotic filtration
approximation and offers an analytical solution of the problem of motion of the liquid in a wooden specimen under
the action of acoustic disturbances. The influence of the pore diameter and volume concentration of the liquid in
the specimen on the drying process is studied.
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Fig. 7. Experimental (points) and calculated (solid curve) dependences of the loss of specimen
weight on the drying time for pine specimen 1.

The calculation results for the time of pressure relaxation in the specimen by the filtration model are in good
agreement with the calculation results obtained by solving equations of mechanics of heterogeneous media.

It is shown that, in the realistic range of parameters, the mathematical model has solutions of the traveling
acoustic wave type, which are stable in time and space.

A series of experiments on moisture extraction from wood is performed, which allows obtaining integral
quantitative data on drying kinetics.

It is shown that the initial stage of the process of acoustic drying can be adequately described by a simple
linearized model of mechanics of heterogeneous media, which takes into account nonequilibrium velocities and
pressures of the components.
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